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Introduction

Plutonium quality is an important measure for the
proliferation-resistance of a nuclear energy system.
Degraded plutonium quality decreases its
attractiveness for use as nuclear weapons. Civil
plutonium discharged from a nuclear reactor with
high burn-up and separated from reprocessing has a
composition very much different from that of
weapons grade (WG). This reactor-grade (RG)
plutonium consists of higher content of heat
producing isotopes (e.g., 2**Pu) and spontaneous
fissionable isotopes (***Pu, >**Pu) which can
significantly complicate its use as nuclear weapons
materials.

Proliferation attributes of plutonium discharged
from light-water reactors (LWRs) with various
burn-up and cooling times had been examined'”.
These include critical mass (kg), heat generation
(W/kg), spontaneous neutron emission (n/s’kg), and
inherent radiation barriers (Sv/h). The focus of
these previous studies was on RG plutonium from
spent LWR fuel. The enrichment (defined as (**Pu
+ 21Pu)/Total Pu) of LWR-grade plutonium is
about 70% depending on the discharged burn-up (in
GWD/t) and decay time (in years). For WG
plutonium, the enrichment is ~94%. The bare
(unreflected) spherical critical masses of the
metallic plutonium (density of ~19.6 g/cc) from
LWR spent fuel were calculated. They were
different from that of WG plutonium by only about
50%. The degrees of difficulty of weapons-usability
(as measured by the heat generation, and
spontaneous neutron emission) of the total RG-
plutonium were also calculated. They showed an
increase by a factor of about 6 and 12 as compared
to those of WG plutonium, for heat generation and
spontaneous neutron emission, respectively. This
study extends the plutonium quality to include those
discharged from different types of reactors, some
with different burn-ups, and examines the effect of
plutonium quality on the critical mass.

Plutonium Quality from Different Fuel Cycles

Plutonium from deep-burn reactors (e.g., very high
burn-up, or those fuelled with inert matrix fuel)
may contain isotopic compositions unfavorable for
weapons-use. Table 1 lists the quality of various
types of plutonium, from weapons-grade to
different reactor-grades.

Table 1. Plutonium Quality of Different Fuel Cycles

¥pu | ¥pw/°Pu | Plutonium
(%) Enrichment
(Wt %)*

Weapons® 0.01 | 0.062 93.9
Magnox’ 0.2 |0.231 81.4
VVER-440° 09 |0.361 73.0
LWR® 1.5 |0.379 71.5
LWR/MOX® 3.5 |0.585 61.1
Candu-NU’
(8.3 GWd/t) -- 0.440 61.1
Candu-MOX’
(171 GWdt) | -- 0.598 64.0
MHTGR®
(W/W-Pu) 1.8 |0.585 62.9
MHTGR®
(deep Puburn) | 1.0 | 1.058 42.8
MHTGR®
(deep Puburn) | 1.0 1.058 14.4
w/30-y decay
LMFBR®, core | 0.08 | 0.432 70.1

blanket | 0.02 | 0.050 953

*Note: (*°Pu + **'Pu) /Total Plutonium, in some cases
the plutonium may contain Am, Np, and U etc.

The bare (unreflected) spherical critical masses of
these metallic plutonium (density of ~19.6%) were
calculated by using the computer code MCNPS5 and
plotted in Figure 1 as function of enrichment,
together with the bare spherical 2°U critical mass
obtained from reference 9. For RG plutonium from
most of the currently operating reactors (including
those fuelled with MOX fuel), their enrichment
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Figure 1. Bare (Unreflected) Metal Spherical Critical Mass of **U and Pu
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